180 research outputs found

    Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics

    Get PDF
    The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics

    Multi-level A Priori Hyper-Reduction of mechanical models involving internal variables

    No full text
    International audienceThis paper concerns the adaptation of reduced-order models during simulations of series of elastoviscoplastic problems. In continuation with previous works, this paper aimed at extending the A Priori Hyper-Reduction method (APHR method) for nonlinear thermal problems to nonlinear mechanical problems involving internal variables. This method is an a priori approach because full incremental responses of detailed models are not forecasted in order to build reduced-order models. The recent extension of the Hyper-Reduction method to reduction of mechanical models involving internal variables makes possible the reduction of degrees of freedom and the reduction of integration points. A multi-level formulation is introduced to focus on the capability of the method to perform efficient parallel computations to adapt reduced-order models

    Hyper-reduction framework for model calibration in plasticity-induced fatigue

    No full text
    International audienceBackground:Many mechanical experiments in plasticity-induced fatigue are prepared by the recourse to finite element simulations. Usual simulation outputs, like local stress estimations or lifetime predictions, are useful to choose boundary conditions and the shape of a specimen. In practice, many other numerical data are also generated by these simulations. But unfortunately, these data are ignored, although they can facilitate the calibration procedure. The focus of this paper is to illustrate a new simulation protocol for finite-element model calibration. By the recourse to hyper-reduction of mechanical models, more data science is involved in the proposed protocol, in order to solve less nonlinear mechanical equations during the calibration of mechanical parameters. Usually, the location of the crack initiation is very sensitive to the heterogeneities in the material. The proposed protocol is versatile enough in order to focus the hyper-reduced predictions where the first crack is initiated during the fatigue test.Methods:In this paper, we restrict our attention to elastoplasticity or elastoviscoplasticity without damage nor crack propagation. We propose to take advantage of the duration of both the experiment design and the experimental protocol, to collect numerical data aiming to reduce the computational complexity of the calibration procedure. Until experimental data are available, we have time to prepare the calibration by substituting numerical data to nonlinear equations. This substitution is performed by the recourse to the hyper-reduction method (Ryckelynck in J Comput Phys 202(1):346–366, 2005, Int J Numer Method Eng 77(1):75–89, 2009). An hyper-reduced order model involves a reduced basis for the displacement approximation, a reduced basis for stress predictions and a reduced integration domain for the setting of reduced governing equations. The reduced integration domain incorporates a zone of interest that covers the location of the crack initiation. This zone of interest is updated according to experimental observations performed during the fatigue test.Results:Bending experiments have been performed to study the influence of a grain boundary on AM1 superalloy oligocyclic fatigue at high temperature. The proposed hyper-reduction framework is shown to be relevant for the modeling of these experiments. To account for the microstructure generated by a real industrial casting process, the specimen has been machined in a turbine blade. The model calibration aims to identify the loading condition applied on the specimen in order to estimate the stress at the point where the first crack is initiated, before the crack propagation. The model parameters are related to the load distribution on the specimen. The calibration speed-up obtained by hyper-reduction is almost 1000, including the update of the reduced integration domain focused on the experimental location of the crack initiation. The related electric-energy saving is 99.9 %

    Désynchronisation partielle de la méthode APHR

    No full text
    National audienceCe papier traite de la désynchronisation des variables internes dans la résolution de problèmes élasto-plastiques en utilisant la méthode APHR (A Priori Hyper Reduction). Cette méthode a priori ne nécessite en amont aucune prévision éléments finis (EF) et permet la construction d'un modèle d'ordre réduit (ROM). Dans la continuité des travaux menés [4], la formulation multi-niveaux est utilisée de façon désynchronisée sur une plaque avec inclusions. Les résultats seront critiqués en termes de précision et d'efficacité numérique

    Estimation d'erreur d'hyperréduction de problÚmes élastoviscoplastiques

    Get PDF
    Nous proposons un indicateur d’erreur pour les prĂ©visions rĂ©alisĂ©es par hyperrĂ©duction de modĂšle dans le cadre de simulations Ă©lastoviscoplastiques. Les problĂšmes Ă©lastoviscoplastiques sont des problĂšmes non linĂ©aires dĂ©crits par des Ă©quations aux dĂ©rivĂ©es partielles en espace et en temps. Nous considĂ©rons ici les modĂšles standards gĂ©nĂ©ralisĂ©s. Le caractĂšre fortement non linĂ©aire de ces problĂšmes rend difficile l’utilisation de calculs hors ligne permettant de faciliter des calculs en base rĂ©duite. Il est alors nĂ©cessaire de proposer des mĂ©thodes de rĂ©duction de l’ordre des modĂšles qui soient peu coĂ»teuses en opĂ©ration d’assemblage ou d’intĂ©gration en espace des rĂ©sidus d’équilibre. L’hyperrĂ©duction a Ă©tĂ© proposĂ©e afin de restreindre ces opĂ©rations Ă  un sous-domaine spatial appelĂ© Domaine d’IntĂ©gration RĂ©duit (RID). Un modĂšle hyperrĂ©duit consiste Ă  rĂ©soudre une forme faible des Ă©quations sur une partie du domaine, en exploitant une reprĂ©sentation en base rĂ©duite des dĂ©placements. Il en rĂ©sulte une prĂ©vision partielle de l’état mĂ©canique. Les variables internes et les contraintes sont alors reconstruites sur tout le domaine Ă  l’aide de la mĂ©thode gappy POD, en ajustant des coordonnĂ©es rĂ©duites pour reprĂ©senter au mieux les prĂ©visions obtenues dans le RID. Nous proposons d’exploiter une base de contraintes en Ă©quilibre pour appliquer la mĂ©thode de l’Erreur en Relation de Comportement. Nous exploitons une formulation incrĂ©mentale variationnelle pour obtenir une borne supĂ©rieure de l’erreur d’approximation. Cette approche est mise en Ɠuvre dans le cadre d’une Ă©tude de sensibilitĂ© Ă  des paramĂštres d’une loi de comportement Ă©lastoviscoplastique. La borne supĂ©rieure de l’erreur exacte permet d’estimer un intervalle d’erreur sur les sorties du modĂšle, si l’on admet que ces sorties sont des fonctions lipschitzienne des dĂ©placements. Le coefficient de Lipschitz est identifiĂ© Ă  l’aide d’une rĂ©ponse simulĂ©e en base complĂšte

    A priori hyper-reduction method for coupled viscoelastic-viscoplastic composites

    Get PDF
    International audienceIn this paper, a mean field homogenization (MFH) method is compared to the hyper-reduction (HR) method. The homogenization of concern aims to forecast the mechanical response of viscoelastic-viscoplastic composites undergoing small strains. Reference results are provided by the usual finite element method (FEM) applied to an unit cell problem. In both methods the microscopic strain fields are represented using a reduced basis. In MFH it is an eigenstrain basis in the vocabulary of [17]. This basis is spanned by the stress-free strains introduced by Eshelby [5]. In the HR method the reduced basis is spanned by modes. It can be created by the proper orthogonal decomposition (POD) method or the APHR method [19]. MFH and HR methods are compared in terms of equation formulation, accuracy and computational time. The accuracy of both global and local results are compared. We consider as MFH local-results the global ones, as if they are uniform in the matrix of the composite. It turns out that the HR method provides simulations of accuracy and computational complexity between the MFH method and the full-field FEM. The HR model contains a reduced mesh named reduced domain (RD). This requires to reconstruct the internal variables by using the Gappy POD. We point out that the APHR method provides unrealistic non-smooth modes when the reconstruction of the internal variables is performed only outside the RD and not inside the RD

    Modélisation algorithmique par réduction de modÚle et maßtrise des événements recurrents inhérents aux problÚmes d'optimisation

    Get PDF
    National audienceNous proposons de traiter efficacement, par une méthode de réduction de modÚle, une suite de simulations dans le cadre de l'optimisation de structures. Lorsqu'une base est construite pour représenter les évÚnements significatifs contenus dans l'ensemble des simulations, les évÚnements récurrents masquent les évÚnements spécifiques à chaque simulation. Le processus d'adaptation du modÚle d'ordre réduit et l'efficacité du processus d'optimisation peuvent s'en trouver affectés. Nous proposerons un nouvel algorithme d'adaptation permettant d'atténuer l'effet de ces évÚnements récurrents

    Modelling and prediction of deformation during sintering of a metal foam based SOFC (EVOLVE)

    No full text
    International audienceStacking of cells in a SOFC stack requires that each element be perfectly flat and deprived, as much as possible, of internal stresses while maintaining their electrochemical capabilities. The EVOLVE concept introduces a metal foam based anode in which the foam plays the role of current collector, gas diffuser and thermo-mechanical deformation buffer. Owing to the different mechanical behaviour of the anode components, the deformation during sintering cannot be intuitively anticipated. Therefore, the global deformation of the cell was modelled and simulated by Finite Element considering a phenomenological approach of the anisotropic sintering. The thermo-mechanical parameters of each component were determined experimentally by dilatometry and three-point bending tests operated under conditions identical to those of the sintering. Results provide relevant indications on components composition and morphology, and on the sintering conditions for producing flat and stackable cells

    Vers une méthode FE2-APHR

    No full text
    National audienceLes approches EF2 permettent de résoudre des problÚmes multi-échelles non linéaires que l'on ne peut pas traiter avec des méthodes d'homogénéisation ou avec la méthode NTFA [2]. Les modÚles EF2 ont en général une complexité superflue. Nous proposons une méthode d'hyperréduction multidimensionnelle pour réduire la complexité de ces modÚles. Les bases réduites utilisées pour l'hyperréduction sont construites par la méthode APHR. Nous présentons ici la simulation la simulation d'une réponse macroscopique associée à des cellules microscopique ayant une réponse élastoplastique, à déformations plastiques trÚs localisées
    • 

    corecore